Skip to main content

KnowledgeRepo

Performs a semantic search over your knowledge repository backed by Qdrant and embeddings.

Usage

Provide QDRANT_COLLECTION_NAME, QDRANT_URL, KR_API_KEY, and OPENAI_API_KEY in the tool config. Pass a query string to search the repository.

{ "query": "How to configure SVAHNAR agent network" }

Returns

Top matching text snippets from the knowledge repository (by default the top 3 results).

YAML usage

tools:
tool_assigned:
- name: "KnowledgeRepo"
config:
QDRANT_COLLECTION_NAME: "my_qdrant_collection"
QDRANT_URL: "https://qdrant.example.com"
KR_API_KEY: "${KR_API_KEY}"
OPENAI_API_KEY: "${OPENAI_API_KEY}"

Invocation payload:

payload:
query: "How to configure SVAHNAR agent network"
k_repo_id: "<repo-uuid>" # optional to scope the search

More details

This tool uses OpenAI embeddings to create a query vector and Qdrant to perform the nearest-neighbor search; result ordering and quality rely on the embedding model selected.

Agent integration example

create_vertical_agent_network:
agent-1:
agent_name: "knowledge_searcher"
LLM_config:
params:
model: "gpt-4o-mini"
tools:
tool_assigned:
- name: "KnowledgeRepo"
config:
QDRANT_COLLECTION_NAME: "my_qdrant_collection"
QDRANT_URL: "https://qdrant.example.com"
KR_API_KEY: "${KR_API_KEY}"
OPENAI_API_KEY: "${OPENAI_API_KEY}"
agent_function:
- "Search the knowledge repository for relevant passages and return top snippets."